Introduction | Proj | ect | Goal | |------------------------|-----|------| |------------------------|-----|------| ☐ Develop operationally useful measures of complexity. #### Why study complexity? - ☐ Cognitive challenge of ATC is one of the fundamental limits that restricts the capacity of a piece of airspace. - ☐ Previous research has concentrated on measures of that cognitive challenge in the Free Flight environment. - ◆ E.g. "Dynamic Density" - ☐ However, these measures do not take into account the inherent structure present in the current operational environment. #### Incorporating structure would: - ☐ Increase the sophistication of predictions of potential controller overload situations (E.g. Monitor Alert in ETMS). - ☐ Provide guidance to airspace redesign projects. #### **Our Approach** - Collaborative effort, sponsored by FAA, with partners at Centre d'Etudes de la Navigation Aérienne (CENA) in France. - Step 1 Literature Review - Current metrics - ◆ Simple count of Number of Aircraft in a Sector - □ Previously proposed metrics - ◆ NASA's Dynamic density, Wyndemere Corporation - Step 2 Field Observations - □ Case study at Boston TRACON - ◆ Comparison of sectors what makes one harder than another? - ☐ Visits, interviews at Boston Center, Montreal Center - ☐ Generated preliminary list of key factors in complexity. - "Flight Explorer" and Analysis of Current System Operation - Step 3 Proposing metrics - Step 4 Validating those metrics #### **System Response to Complexity** - Why study structure in the current system? - ☐ The ATC system is an adaptive system. - Biological analogy. - ☐ Evolve in response to controller capability limits being exceeded - ◆ E.g. splitting sectors, changing procedures - ☐ Therefore, observing the current system can provide insight into complexity limits - ◆ Use of Structure - Maximum observed complexity in sectors. #### "Flight Explorer" #### Capabilities: - ☐ ETMS feed in real-time on desktop PC - ☐ IFR flights in United States, Canada, and United Kingdom. - ☐ For each flight: - ◆ Present position, Altitude, Speed vector - ♦ Historical radar track - ◆ Current flight plan - ☐ Displays: - ♦ Weather images - ◆ Sector boundaries - ◆ Airways, Navaids etc... #### Technical details: - Commercial service provided by Flight Dimensions International (www.flightexplorer.com) - ☐ Update rate ~ 1 minute ### **Preliminary Observations** #### **Dallas Fort-Worth** Aircraft are condensed into distinct flows feeding 4 arrival fixes. June 20, 2001 12:19 p.m. 153 Aircraft In-bound #### Chicago Presence of branching structure consolidates aircraft into flows, reducing the complexity of the ultimate merging process May 3, 2001 6:20 p.m. 295 Aircraft In-bound #### **Atlanta** Condensation and merges have reduced 116 trajectories at airport to 4 • June 14, 2001 11:15 a.m. 116 Aircraft In-bound #### **Boston** Similar branching pattern is observed June 14, 2001 11:21 a.m. 78 Aircraft In-bound #### **Dallas** Complexity is increased by need to handle large groups of aircraft in a short time. **ARTCC Boundaries** Route Flown May 14, 2001 9:18 a.m. 117 Aircraft In-bound #### San Francisco Special use airspace provides additional constraints Special Use Airspace **ARTCC Boundaries** Route Flown -0-0-0- Flight Plan • June 11, 2001 4:13 p.m. 78 Aircraft In-bound #### **New York City (LGA, EWR, JFK)** Departures can be structured as well: April 30, 2001 2:40 p.m. 135 Aircraft Out-bound #### Chicago • June 14, 2001 11:04 a.m. 160 Aircraft In-bound #### Branching Structure, Chicago Aircraft / Hour, Averaged 11:00 – 15:00 # Temporal Variations in Demand #### Flows at a Merge Point - Observed maximum of 3 significant flows at any merge point. - Implies number of flows to be merged is a limiting factor in complexity. Example: Chicago, June 11, 2:12 p.m. **ARTCC Boundaries** Route **Flown** #### Flows at a Merge Point - Generally observe 1 merge point only in a sector - Suggests performing merges is a limiting factor in complexity. - Example: Chicago, May 3, 8:59 p.m. Sector Boundaries In-bound ORD In-bound's Route Flown Out-bound ORD # Arrival flows as part of larger system: Dallas June 11, 2001 12:29 p.m. 163 Aircraft In-bound (DFW/DAL) **DFW** DAL OTHER (> FL240) ## Summarizing so far.... | • | Shown there exists similar branching structure in arrival flows. | |---|---| | | Condensation points bring aircraft together to form flows Flows are merged to provide final feed to an airports arrival fixes Process reduces complexity of sequencing aircraft, and spreads that task across more controllers. | | • | Examples of Elements Driving Complexity | | | Special Use Airspace (San Francisco)Temporal variations in demand (arrival banks in Denver) | | • | Limiting Factors for Complexity: | | | Maximum of 3 flows at a merge pointOnly 1 merge points in a sector. | | | | #### Weather, Flows, and Complexity - How does weather impact these flows? - Rerouting - ◆ Chicago, May 3 - □ Holding - ♦ Boston, April 24 - ◆ Dallas, May 4 - Issues for Complexity: - □ Buffering - Ability to absorb aircraft should outflow be cutoff - Clustering - Result of competition between: - Downstream limitations. - □ Sector Alignment to Flows ### **Impact of Convective Activity** - Aircraft avoiding convective weather significantly distort flows. - May 11, 2001 (All Flights above FL280) 7:52 p.m. ## Chicago, May 3, 7:20 pm. Thunderstorms about to impact NW fix. ### Chicago, May 3, 8:59 pm. - To deal with complexity associated with increased demand, diverted aircraft are integrated into existing patterns for NE fix. - Example: Chicago, May 3, 8:59 p.m. High Sector Boundaries In-bound ORD In-bound's Route Flown Out-bound ORD ## Illustrating the Concept of Buffering: Holding in Boston Being forced to hold aircraft causes the buffering capacity to decrease, increasing the complexity for the controllers. April 24, 2001 6:33 p.m. 70 Aircraft In-bound ## Backward Propagation of Holding: Dallas Fort-Worth • May 4, 2001 9:00 p.m. As the buffering capacity of each sector is exceeded, holding propagates back through the flows. # Clustering: Dallas Reroute May 4, 2001 9:05 p.m. DFW In-bound #### **Sectors often Aligned with Major Flows Departures from Washington - Dulles** - Sectors are often designed parallel to major flows. - Reduces ability to buffer as holding will disrupt the major flow. - May 1, 2001 - 2:03 p.m. 63 Aircraft Out-bound ## North Atlantic Tracks Transition Area **May 2001** 3:18 p.m. #### **Sector Structure** **Observed Flows** ## Observation: The physical definition of a sector is not always appropriate. - Identified concept of "Effective Area" of a sector - ☐ Example: Plymouth Position in Boston TRACON: #### **Inter-sector Potential Conflict** May 3, 200 1:08 PM Difficulty in detecting possible conflict 2 sectors away High Sector Boundaries Flight Plan **Observed Track** # Possible conflict, May 3, 8:11 pm. - Difficulty in detecting possible conflict 2 sectors away - Most aircraft flowing parallel to "major-axis" of the sectors High Sector Boundaries Flight Plan Observed Track ### Summary | • | Identified Branching Structures in Arrival Patterns ☐ Aircraft are condensed into flows ☐ Those flows are merged to feed airport arrival fixes ☐ Process reduces complexity of sequencing aircraft, and spreads that task across more controllers. | |---|---| | • | Illustrated Impact on Complexity of ☐ Special Use Airspace ☐ Temporal Variations in Demand ☐ Weather | | • | ☐ Buffering Capacity Significant Observations | | | Maximum of 3 flows at a merge pointOnly 1 merge point in a sector | #### **Future Work** - Pursue hypothesis that the observed structure is used to reduce complexity of the system. - Hope to propose a metric based on a formal breakdown of the problem into the effects of: - ☐ Structure - Traffic Load - Operations - Tentative formulation: $Complexity = \langle Structure \rangle \otimes \langle Traffic Load \rangle \oplus \langle Operations \rangle$ where \otimes , \oplus are "to be determined" operators.